Estima: AND μ	res of $= 5.3$	Equilibriu 5 M at Var	im Constan ious Wavei	ts at 23° Lengths
Wavelength,				
nm		$10^{-2}K_1$		$10^{-2}K_2^a$
400		1.8		3.5
420		1.4		1.6
440		1.1		2.6
460		1.9		1.1
470		2.1		2.2
480		2.0		1.8
500		1.7		0.8
520		1.5		2.2
540		1.1		1.2
	Av	1.6 ± 0.1		1.9 ± 0.3

TABLE I

^{*a*} The value $K_{\rm H} = 0.90~M$ has been assumed at $\mu = 5.35~M$ and 23°.6

Figure 2.—Derived spectra of $MnF_{aq}^{2+}(O)$ and $Mn(OH)F_{aq}^{+}(\bullet)$.

by chlorine^{7a} and bromine.^{7b} The rate-determining step in this reaction is⁷ the first-order decomposition of the monooxalato complex

$$\mathrm{MnC}_{2}\mathrm{O}_{4}^{+} \xrightarrow{k_{1}} \mathrm{Mn}^{2+} + \mathrm{C}_{2}\mathrm{O}_{4}^{-} \qquad (\mathrm{IV})$$

The observed rate of reaction at constant acidity varies with the concentrations of added oxalic acid and chloride or fluoride ions, and the data of Taube⁷ can now be rationalized by combining reactions I-III with

$$Mn^{3+} + H_2C_2O_4 \implies MnC_2O_4^+ + 2H^+ \quad (K_a) \qquad (V)$$

$$MnC_2O_4^+ + H_2C_2O_4 \implies Mn(C_2O_4)_2^- + 2H^+ (K_b)$$
 (VI)

$$Mn^{3+} + Cl^{-} \Longrightarrow MnCl^{2+} \quad (K_{Cl}) \qquad (VII)$$

$$\operatorname{MnC}_{2}O_{4}^{+} + \operatorname{HF} \rightleftharpoons \operatorname{Mn}(C_{2}O_{4})F + H^{+} (K_{aF}) (VIII)$$

In the absence of added chloride or fluoride ion we have obtained the values of k_1 , K_a , and K_b of 11.9 min⁻¹, $1.64 \times 10^5 M$, and 45 M, respectively. Comparison of these estimates with those obtained by Taube^{7b} in the absence of reaction I shows that the principal effect of its inclusion in the calculations is to increase the value of K_{a} . The kinetic data^{7b} in the presence of up to a 105-fold excess of chloride only require the additional equilibrium VII, with $K_{\rm Cl} = 13.5 \pm 0.5 \ M^{-1}$ at $\mu =$ 2 M and 25° . In the presence of added fluoride the data is accounted for by the additional equilibria II, III, and VIII with $(2K_1 + K_2K_H) = 1.1 \times 10^3 M$ and (7) (a) H. Taube, J. Am. Chem. Soc., 70, 1216 (1948); (b) H. Taube, ibid., 70, 3928 (1948).

 $K_{\rm aF} = 118$ at $\mu = 2 M$ and 25° . Individual values of K_1 and K_2 cannot be obtained from the original^{7b} kinetic data since the acidity was kept constant at 2.0 M. However, the present results for $\mu = 5.35 M$ suggest that $K_1 \approx K_2$, whereupon we calculate $K_1 \approx K_2 \approx 370$ at $\mu = 2 M$ and 25°. The stability constants for fluoride complexation thus appear to increase with decreasing total ionic strength. The value of the composite stability constant obtained from spectral measurements by Fackler and Chawla² is consistent with these estimates, since it was obtained at varying ionic strength and acidity.

The ratio $K_1/K_2 = K_H/K_{FH}$, where $K_{FH} = [Mn (OH)F^+[H^+]/[MnF^{2+}] \approx 1.1 \ M \text{ at } \mu = 5.35 \ M \text{ and}$ 23° , shows that the presence of F⁻ results in little change in the acidity of the remaining water molecules of the inner sphere. This conclusion is consistent with the similarity of the spectra of Mn_{aq}^{3+} , $MnOH_{aq}^{2+}$, $MnCl_{aq}^{2+}$, and MnF_{aq}^{2+} in both the visible and the uv regions.

The splitting of the visible spectrum of $Mn(OH)F_{aq}^{+}$ is presumably⁸ due to splitting of the ${}^{5}E_{g}$ (and possibly ${}^{5}T_{2g}$) level by tetragonal distortion. It is not possible to assess the importance of *cis-trans* isomerism in this complex in the absence of data on other mixed-ligand complexes of this type. However, it should be noted that the high-spin⁹ complex $Mn(CYDTA)OH^{2-}$ has a spectral maximum at 448 nm which moves to 510 nm on protonation.¹⁰ Changes in the spectra of the aquo species in the presence of very large excesses of chloride,^{3,11} where higher order chloro complexes are formed, suggest that cumulative effects of negative charge can indeed cause measurable spectral changes in mixed complexes of Mn(III).

(8) T. S. Davis, J. P. Fackler, Jr., and M. J. Weeks, Inorg. Chem., 7, 1994 (1968).

(9) Y. Yoshino, A. Ouchi, Y. Tsunoda, and M. Kojima, Can. J. Chem., 40, 775 (1962). CYDTA = trans-1,2-diaminocyclohexanetetraacetic acid.

(10) R. E. Hamm and M. A. Suwyn, Inorg. Chem., 6, 139 (1967). (11) J. A. Ibers and N. Davidson, J. Am. Chem. Soc., 72, 4744 (1950).

Contribution from the General Electric Research and DEVELOPMENT CENTER, SCHENECTADY, NEW YORK 12301

A High-Pressure Form of Palladium Disulfide

By Ronald A. Munson¹ and John S. Kasper

Received November 4, 1968

An orthorhombic palladium disulfide (I) (a = 5.46,b = 5.54, c = 7.53 Å) may be prepared by heating palladium dichloride and excess sulfur at 450° in an evacuated quartz tube for 4 days.² The structure of the palladium disulfide so prepared^{3,4} [space group D_{2h}^{15} (Pbca)] is derived from the pyrite structure, which places the cation in a nearly perfect octahedral environment, by elongation of one of the fourfold octahedral axes.⁵

- (3) F. Grønvold and E. Røst, Acta Chem. Scand., 10, 1620 (1956).

⁽¹⁾ Bureau of Mines, Metallurgy Research Center, College Park, Md. 20740.

⁽²⁾ L. Woehler, K. Ewald, and A. G. Krall, Ber., 66, 1638 (1933).

⁽⁴⁾ F. Grønvold and E. Røst, Acta Cryst., 10, 329 (1957).
(5) F. Hulliger and E. Mooser, "Progress in Solid State Chemistry," Vol. 2, Pergamon Press, Inc., New York, N. Y., 1955, pp 330-377.

SPACING, INDEXING, AND INTEGRATED INTENSITIES					
OF THE L	KEFLECTIONS OF I	Thtensity	deele		
008			Calc		
3.584	002	79	3.580		
3.433	111	60	3.434		
3.003	102	8	3.002		
2.762	020	65	2.700		
2.(2)	200)	R	2 6 2 9		
2.044	021	6	2.042		
2.169	210	Š	2.468		
2.310	121	_	(2.3)5		
2.1940	211	7	2.334		
2.195	022	60	2.195		
2.186	202 }	007	2.183		
2.046	122		(2.040		
2.034	113 }	40	{ 2.038		
	212)		(2.032		
1.956	220	19	1.957		
1.805	023	و	1.011		
	(123)		1.720		
1.717	\$ 222		1.717		
		100	1.710		
1.706			1.700		
	(104)		1.102		
1.693	1 116		1.094		
1.64	{ 302 }	հ	<i>{</i> 1.634		
	(114)	-	1.628		
	(223)		(1.513		
	024		1.505		
1.51	231	ᅶ	1.503		
	204		1.501		
	(321 /		1.492		
	(133)		(1.415		
1.411.	232	24	1.413		
	322		1.409		
	· (10 ·		· 1.400		
1.292	042+	ਸ਼ੁ	1.296		
1.238	420+	6	1.234		
T*T0.	4224	10	1.101		

TABLE I

^a Cu K α , nickel-filtered radiation. d values were obtained with a Guinier camera and the intensities from a diffractometer tracing. There is evidence for the presence of some preferred orientation.

This type of Jahn–Teller distortion, which is frequently encountered in palladium compounds, removes the degeneracy of the $d\gamma$ energy levels so that spin pairing in the lower $d\gamma$ level results. As expected, PdS₂ (I) is spin-paired and a semiconductor.⁶

We have found that a second orthorhombic palladium disulfide (II) (a = 5.51, b = 5.56, c = 7.16 Å) may be prepared from an intimate mixture of the elements or directly from I by reaction for 5 min at 63 kbars and 1450° followed by quenching. This high-pressure form of PdS₂ has apparently been prepared elsewhere.⁷ At 250–300° and 1 atm the conversion of II to I is accompanied by decomposition to PdS and sulfur. The pattern of the intensities of the X-ray reflections of II (Table I) suggests that the structure of II, like that of I, is derived from the pyrite structure by elongation of the z axis; however, the elongation in the case of II is not so great as in the case of I and is in fact intermediate between I and the ideal cubic pyrite configuration. The pycnometric density of II in acetone is 4.92 ± 0.10 g cm⁻³ which may be compared with the calculated density, z = 4, of 5.17 g cm⁻³.

Both II and I exhibit weak temperature-independent paramagnetism. II is a better conductor (specific resistivity, $\rho_{II} \cong 0.5$ ohm cm at 25°) than I ($\rho_{I} \cong 100$ ohm cm) and although difficulty was encountered in making reproducible four probe electrical contacts, ρ_{II} appears to increase by a factor of 2 from liquid nitrogen to room temperature. Compound II does not suffer a superconducting transition above 1.45°K. The apparent presence of metallic-type conduction in II suggests that the delocalization of the electrons in the $d\gamma$ levels stabilizes the shorter bond lengths along the z axis in the high-pressure form of palladium disulfide. The formation of two distinct pyrite phases of iridium disulfide⁸ is accompanied by a change in stoichiometry from a sulfur to iridium mole ratio of approximately 3 to a mole ratio of nearly 2. This is not the case with palladium disulfide, for both I $(37.6\% \text{ by BaSO}_4 \text{ precipitation}^2)$ and II (38.2 \pm 0.5% S by thermogravimetric analysis) analyze very nearly as PdS_2 (37.5% S).

The preparation of II was carried out in the "belt" superpressure apparatus⁹ using a cell constructed of sodium chloride with a graphite heater. The cell was calibrated at room temperature with the bismuth 25.5- and 27-kbar and the barium 58-kbar transformations. Temperature, uncorrected for pressure, was determined from a calibration of the high-pressure cell with a Pt—Pt-10% Rh thermocouple.

Acknowledgment.—The authors wish to acknowledge the able assistance of Alice M. Davis, W. G. Dorfield, R. D. Kieft, M. J. Moore, and J. S. Pirog in making the X-ray diffraction patterns and analyses. J. S. Kouvel and Jean W. Kenyon kindly measured the magnetic susceptibilities; Warren DeSorbo and W. A. Healy used an induction method to examine the specimen for superconductivity.

(8) R. A. Munson, Inorg. Chem., 7, 389 (1968).

(9) H. T. Hall, Rev. Sci. Instr., 31, 125 (1960).

Contribution from the Department of Chemistry, University of Southern California, Los Angeles, California 90007

Further Knowledge of the Mercuric Oxide-Tris(trifluoromethyl)phosphine Reaction. Nuclear Magnetic Resonance Comparison of Four Bis(trifluoromethyl)phosphorus Compounds

BY ANTON B. BURG AND INDU B. MISHRA

Received December 16, 1968

When the compound $Hg(CF_3)_2$ was made from $(CF_3)_3P$ and HgO at 100°, the nonvolatile by-product was empirically formulated as an uncertain mercury-

⁽⁶⁾ F. Hulliger, J. Phys. Chem. Solids, 26, 639 (1965).

⁽⁷⁾ T. A. Bither, *et al.*, reported by F. Hulliger, "Structure and Bonding," Vol. 4, Springer-Verlag, New York, N. Y., 1968, p 108, 194.